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Abstract: In order to improve the security of data storage in cloud calculation, a chameleon Hash 
authentication tree optimization audit method for data storage security in cloud calculation is 
proposed. First, an optimized public audit agreement is proposed. By storing homomorphic linear 
validator for user data on TPA sites, the response size of cloud storage server (CSS) is optimized. 
At the same time, the quasi-random function is used to optimize the query request to CSS; secondly, 
the chameleon hash and an improved chameleon authentication tree are used to perform efficient 
dynamic data updating on client data (cloud calculation) to support block-level updating and 
fine-grained updating; finally, through thorough security and performance analysis, it is clearly 
verified that the proposed method is safe and efficient. 

1. Introduction 
Cloud computing is an Internet-based computing model that is one of the important directions in 

the development of current computing technology. It is considered to be the next-generation 
architecture of the IT industry with many advantages, such as on-demand self-service, extensive 
network access, quick response, location-independent resource pool and etc. [1~2]. Data is moved 
to the cloud. Computing resources and services are used in the pay-for-use mode and the platform 
as a service (PaaS) form. Users can easily access and use resources without considering the 
complex hardware management. This is much less costly than their own building of IT 
infrastructure [3]. 

2. Problem description 
2.1 System model 

The network architecture for cloud data storage is shown in Fig. 1. It has three different network 
entities that can be identified as follows: 

(1) Client/Cloud-User: The entity can be a single consumer or organization, has a large number 
of data files stored in the cloud, and relies on the cloud for data maintenance and computing. 

(2) Cloud Storage Server (CSS): An entity that has significant storage space, computing power 
and resources to maintain customer data. It is managed by a cloud service provider (CSP). Here, we 
will not make a distinction between CSS and CSP. 

2.2 Safety threat 
We considered three types of data/metadata attacks in this paper. They are: 

(1) Replace Attacks: Malicious CSS may omit questionable data block ( im ) or its metadata ( iσ ), 

and replace with another pair of valid and undamaged data block ( im ) and metadata ( iσ ) for 
passing the audit. 

(2) Forge Attacks: Malicious CSS or auditor (TPA) cannot forge metadata (HLAS), which may 
lead to unreasonable and unsatisfactory data auditing. 
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(3) Replay Attacks: Malicious CSS uses the evidences generated by data not updated or previous 
data and previous evidences or other information. It does not query the real data of the client. 

2.3 Design objectives 
Our design objectives are as follows: 
(1) Optimized public auditability of cloud data storage (OPACDS): it permits that TPA may be 

authorized to verify the correctness of client data stored on the cloud. Such process requires no 
retrieval of it. No additional online client/cloud-user will be generated. 

(2) Support for dynamic data update operations: it permits that cloud-user/client executes block 
level and fine grit updating on its files with a method as efficient as possible. 
2.4 Chameleon authentication tree 

Chameleon authentication tree is a generalized Merkle Hash Tree. The right child of each node is 
equal to the Chameleon Hash value of its child node. The left child of each node is equal to the 
simple Hash value stitched in series of the child. Fig. 1 shows an improved version of the 
Chameleon authentication tree structure (mCAT) proposed in this paper. 
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Fig. 1 An improved version of Chameleon authentication tree structure 

The improved version of the Chameleon authentication tree (mCAT) structure as shown in Fig. 1 
will be detailed in the next section. 

3. mCAT-based public auditing and dynamic data update 
To ensure the integrity of the data, an optimized public auditing and dynamic data update scheme 

is proposed. It consists of three phases: 
(1) Setup phase: This phase includes key generation, file preprocessing of production block 

metadata (HLAS), mCAT structure generation of files and authorization to TPA. 
(2) Dynamic data update: At this stage, the client executes the stored data updating of block level 

and fine grit by using MCAT algorithm in the cloud. It then computes the new HLA of the modified 
block and stores the same on the TPA site. 

(3) Third-party auditing: At this stage, an authorized third-party auditor (TPA) sends a query 
request to the CSS. CSS returns an integrity certificate that corresponds to the set of challenged 
blocks and is returned to the TPA. TPA verifies the integrity of the challenged block set thereafter. 

3.1 Setup phase 

It is supposed that G  is a p-order prime set consisting of pZ . Where, p  is a big prime. 
: 0,1( )H G∗ →  is an anti-collision hash function. ()h  is a cryptographic hash function. ()ch  is a 

Chameleon hash function, and : Te G G G× →  is a bilinear map. The client first negotiates these 
parameters with other parties (CSS and TPA) and then runs the following algorithms: 

)1(KeyGen λ
: The client generates the value pZα ∈  and the generator g G∈ . α  becomes a 

part of the key. ( ),g gα
 becomes a part of the public key. The client uses )1(chGen λ

 to generate a 
key pair ,( )csk cpk  for Chameleon Hash function ()ch . Where, csk  is the key. cpk  is the 
public key of this Chameleon Hash function. Finally, the client's key is: ( ),cskα , and the public 
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key is: , ,( )g g cpkα
. 

Generate HLA : The client divides the file F into n blocks of equal size. Thus, there is 
1 2 3, , , ,( )nF m m m m=  , and there is i pm Z∈ . It generates a random number u G← . Then, for 

each data block, the client generates a homomorphic linear authentication 

(HLA): ( ( ) )im
i iH m uσ α← ⋅ . This results in n  group(s) of HLAs, the set of which can be 

expressed as ,1{ }i i nφ σ= ≤ ≤ . The client then creates a mCAT whose leaf nodes are hashed file 

blocks ,1( ( ) )ih m i n≤ ≤ . 
Authorize TPA: The customer selects a TPA and asks for its ID. The client generates an 

authorization message authk  and generates a signature ( || )auth authsig k ID a= . It sends the 

signature authsig . The audit delegate queries to the TPA. 

Finally, the customer stores { }, , authF T k  of CSS and { },uφ  of TPA. { }, , ,authF T k φ  is then 
deleted from its storage memory. This ensures that the mCAT algorithm uses only nodes that are not 
defined for use. 

3.2 Dynamic data update phase 
At this stage, the client/cloud-user interacts with CSS to execute updates of their data. The 

update phase supports the following update requests: PM (partial modification of the data block) 
and R (replacement of the data block). Considering Fig. 2, the dynamic data update process of PM 
is as follows: 

(1) The client writes the request: { }BlockRequest i= , where i  is the index of the block to be 
modified, and sends it to CSS. 

(2) CSS receives the BlockRequest and executes the following operations: CSS locates im , and 

computes the mCAT authentication path for im : 

,0{ ( ) ( ) }, , , ,i adj c hResponse m h m aPath sig aPath v= (1) 

Where, adjm  is the brother node of im . aPath  is the verification path of the data block im . 
( ) ( )csig aPath aPath a=  is the customer signature on aPath . ,0hv  is the leftmost node, which can 

be moved from ( )ih m  along the path to the root node. Finally, it sends a response to the 
client/cloud-user. 

(3) After receiving the response, the client executes the operation VerifyAuth: First, the client 
verifies the aPath signature. That is to check: 

( ( ) ) (, , )ce sig aPath g e aPath ga==  (2) 

If the test fails, the client interrupts the process; otherwise, the client computes ( )ih m . The client 

then uses ( )adjh m  and ( )ih m  to compute ,0hv′ . Finally, the client checks if the following condition 

is met: ,0 ,0h hv v′== . 

If the condition ,0 ,0h hv v′==  is still not met, the client interrupts the process; otherwise, the client 

computes im′  and ( )ih m′ , and uses them to generate a collision R value (using ()col  function) for 

the first node ( ,h iv′  in the CAT). Such value can be computed using the Chameleon Hash function. It 

depends on the path from the node ( )ih m′  to the remaining nodes ,0hv  ( h h′≥ ) . The client then 
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uses r′  to update the verification path aPath aPath′→ , and computes the signature of the path 
aPath′ , i.e. ( ) ( )csig aPath aPath a′ ′= . The client forms an update request: 

{ , , , , , ( )}c

UpdateRequest
PM i o data aPath sig aPath

=
′ ′  (3) 

The update request is sent to CSS. CSS starts with the offset o in im . The data block im  will be 

updated to im′  with the data. At the same time, it uses the new random number in aPath′  to 

update the authentication path in mCAT, and then replaces the old ( )csig aPath  with ( )csig aPath′ . 
A "update successfully" response is then sent to the client. 

(4) After receiving the “update successfully” response from CSS, the client computes a new 

HLA: ( ( ) )im
i iH m u ασ ′′ ′← ⋅ for the modified data block im′ , and sends it to TPA. TPA replaces the 

old ( )iHLA σ  with the new ( )iHLA σ ′ . The client deletes im′  from memory thereafter. 
3.3 Third party auditing phase 

At this stage, the authorized TPA ( authsig  to be sent by the client) works with CSS to determine 
the integrity of the client’s data. It mainly executes three operations: 

(1) Challenge request: This operation is executed by TPA. It uses client pair , ,{ }authu sigϕ  for 
sharing during the installation phase. TPA takes its ID and encrypts it with the public key of 

CSS:{ }PKCSSID . TPA now uses quasi-random function ()sf  to generate c different block indices. It 

is supposed that ,[ ]1I n⊆  is the set of c block indices generated by quasi-random function ()sf . 

TPA now selects c random coefficients as { }i p i Iv Z ∈∈ . Finally, it forms a challenge 

request { },{ },{ ,}PKCSS i i I authChallengeReq ID i v sig∈= , and sends it to CSS. 
(2) Integrity proof: After receiving the challenge 

information { },, },{ ,{ }PKCSS i i I authChallengeReq ID i sigu v ∈= , CSS verifies authsig . To this end, CSS 

first decrypt ID with its private key CSSSK  and authk  (i.e. authk ID ). This is then verified by the 
following equation: 

,( ) ),(auth authe sig g e k ID ga=     (4) 

If ( )authsignature sig  verification fails, it will reject ChallengeReq . Otherwise, CSS computes 
i i pi I

v m Zm
∈

= ∈∑ and 
( ) iv

ii I
H mξ

∈
=∏ , where i I∈ . Finally, it sends the evidence 

,{ }IntegrityProof µ ξ=  to TPA. 
(3) Integrity verification. After receiving the ,{ }IntegrityProof µ ξ=  information from CSS, 

TPA executes the operation VerifyIntegrity . It contains: TPA uses { }, i i Ii v ∈  and stores ( )i i Iσ ∈  

of the file block, computes 
iv

ii I
Gσ σ

∈
= ∈∏ , and verifies whether the following equation is 

satisfied: 

( ) (, . , )e g e u gµ ασ ξ=        (5) 
If this is not the case, it means that the client data stored on the CSS violates the integrity 

requirement. TPA is responsible for reporting the same to the client. 

391



4. Conclusion 
This paper optimized the public auditing of client data in the cloud environment by migrating 

HLA from the CSS site to the TPA site. We also proposed a dynamic data update protocol using the 
improved Chameleon Authentication Tree (mCAT). Here, we demonstrate the security of our 
optimized audit protocol, showing that it can withstand replay, replace and forge attacks. At the 
same time, the validity of the algorithm and the validity of the integrity verification are analyzed 
and proved by theoretical analysis. 
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