
Research on Cloud Computing Data Storage Security Based on Hash
Authentication Tree

Liu Hongqing
Hunan Vocational College of Modern Logistics, Changsha, Hunan, 410131, China

Email:158140027@qq.com

Keywords: Cloud Calculation, Data Storage, Chameleon Authentication Tree, Third Part Audit,
Quasi Random Function

Abstract: In order to improve the security of data storage in cloud calculation, a chameleon Hash
authentication tree optimization audit method for data storage security in cloud calculation is
proposed. First, an optimized public audit agreement is proposed. By storing homomorphic linear
validator for user data on TPA sites, the response size of cloud storage server (CSS) is optimized.
At the same time, the quasi-random function is used to optimize the query request to CSS; secondly,
the chameleon hash and an improved chameleon authentication tree are used to perform efficient
dynamic data updating on client data (cloud calculation) to support block-level updating and
fine-grained updating; finally, through thorough security and performance analysis, it is clearly
verified that the proposed method is safe and efficient.

1. Introduction
Cloud computing is an Internet-based computing model that is one of the important directions in

the development of current computing technology. It is considered to be the next-generation
architecture of the IT industry with many advantages, such as on-demand self-service, extensive
network access, quick response, location-independent resource pool and etc. [1~2]. Data is moved
to the cloud. Computing resources and services are used in the pay-for-use mode and the platform
as a service (PaaS) form. Users can easily access and use resources without considering the
complex hardware management. This is much less costly than their own building of IT
infrastructure [3].

2. Problem description
2.1 System model

The network architecture for cloud data storage is shown in Fig. 1. It has three different network
entities that can be identified as follows:

(1) Client/Cloud-User: The entity can be a single consumer or organization, has a large number
of data files stored in the cloud, and relies on the cloud for data maintenance and computing.

(2) Cloud Storage Server (CSS): An entity that has significant storage space, computing power
and resources to maintain customer data. It is managed by a cloud service provider (CSP). Here, we
will not make a distinction between CSS and CSP.

2.2 Safety threat
We considered three types of data/metadata attacks in this paper. They are:

(1) Replace Attacks: Malicious CSS may omit questionable data block (im) or its metadata (iσ),

and replace with another pair of valid and undamaged data block (im) and metadata (iσ) for
passing the audit.

(2) Forge Attacks: Malicious CSS or auditor (TPA) cannot forge metadata (HLAS), which may
lead to unreasonable and unsatisfactory data auditing.

2019 2nd International Conference on Computer Science and Advanced Materials (CSAM 2019)

Copyright © (2019) Francis Academic Press, UK DOI: 10.25236/csam.2019.080388

(3) Replay Attacks: Malicious CSS uses the evidences generated by data not updated or previous
data and previous evidences or other information. It does not query the real data of the client.

2.3 Design objectives
Our design objectives are as follows:
(1) Optimized public auditability of cloud data storage (OPACDS): it permits that TPA may be

authorized to verify the correctness of client data stored on the cloud. Such process requires no
retrieval of it. No additional online client/cloud-user will be generated.

(2) Support for dynamic data update operations: it permits that cloud-user/client executes block
level and fine grit updating on its files with a method as efficient as possible.
2.4 Chameleon authentication tree

Chameleon authentication tree is a generalized Merkle Hash Tree. The right child of each node is
equal to the Chameleon Hash value of its child node. The left child of each node is equal to the
simple Hash value stitched in series of the child. Fig. 1 shows an improved version of the
Chameleon authentication tree structure (mCAT) proposed in this paper.

CH
HCH

CH

CH
CH

CH

CH
CH

CH

CH CHH

H

H

V4,0

V3,0

V2,0

V1,0 V1,1 V1,2 V1,3 V1,5 V1,6 V1,7

V2,1 V2,2 V2,3

V3,1

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

V1,4

Fig. 1 An improved version of Chameleon authentication tree structure

The improved version of the Chameleon authentication tree (mCAT) structure as shown in Fig. 1
will be detailed in the next section.

3. mCAT-based public auditing and dynamic data update
To ensure the integrity of the data, an optimized public auditing and dynamic data update scheme

is proposed. It consists of three phases:
(1) Setup phase: This phase includes key generation, file preprocessing of production block

metadata (HLAS), mCAT structure generation of files and authorization to TPA.
(2) Dynamic data update: At this stage, the client executes the stored data updating of block level

and fine grit by using MCAT algorithm in the cloud. It then computes the new HLA of the modified
block and stores the same on the TPA site.

(3) Third-party auditing: At this stage, an authorized third-party auditor (TPA) sends a query
request to the CSS. CSS returns an integrity certificate that corresponds to the set of challenged
blocks and is returned to the TPA. TPA verifies the integrity of the challenged block set thereafter.

3.1 Setup phase

It is supposed that G is a p-order prime set consisting of pZ . Where, p is a big prime.
: 0,1()H G∗ → is an anti-collision hash function. ()h is a cryptographic hash function. ()ch is a

Chameleon hash function, and : Te G G G× → is a bilinear map. The client first negotiates these
parameters with other parties (CSS and TPA) and then runs the following algorithms:

)1(KeyGen λ
: The client generates the value pZα ∈ and the generator g G∈ . α becomes a

part of the key. (),g gα
 becomes a part of the public key. The client uses)1(chGen λ

 to generate a
key pair ,()csk cpk for Chameleon Hash function ()ch . Where, csk is the key. cpk is the
public key of this Chameleon Hash function. Finally, the client's key is: (),cskα , and the public

389

key is: , ,()g g cpkα
.

Generate HLA : The client divides the file F into n blocks of equal size. Thus, there is
1 2 3, , , ,()nF m m m m=  , and there is i pm Z∈ . It generates a random number u G← . Then, for

each data block, the client generates a homomorphic linear authentication

(HLA): (())im
i iH m uσ α← ⋅ . This results in n group(s) of HLAs, the set of which can be

expressed as ,1{ }i i nφ σ= ≤ ≤ . The client then creates a mCAT whose leaf nodes are hashed file

blocks ,1(())ih m i n≤ ≤ .
Authorize TPA: The customer selects a TPA and asks for its ID. The client generates an

authorization message authk and generates a signature (||)auth authsig k ID a= . It sends the

signature authsig . The audit delegate queries to the TPA.

Finally, the customer stores { }, , authF T k of CSS and { },uφ of TPA. { }, , ,authF T k φ is then
deleted from its storage memory. This ensures that the mCAT algorithm uses only nodes that are not
defined for use.

3.2 Dynamic data update phase
At this stage, the client/cloud-user interacts with CSS to execute updates of their data. The

update phase supports the following update requests: PM (partial modification of the data block)
and R (replacement of the data block). Considering Fig. 2, the dynamic data update process of PM
is as follows:

(1) The client writes the request: { }BlockRequest i= , where i is the index of the block to be
modified, and sends it to CSS.

(2) CSS receives the BlockRequest and executes the following operations: CSS locates im , and

computes the mCAT authentication path for im :

,0{ () () }, , , ,i adj c hResponse m h m aPath sig aPath v= (1)

Where, adjm is the brother node of im . aPath is the verification path of the data block im .
() ()csig aPath aPath a= is the customer signature on aPath . ,0hv is the leftmost node, which can

be moved from ()ih m along the path to the root node. Finally, it sends a response to the
client/cloud-user.

(3) After receiving the response, the client executes the operation VerifyAuth: First, the client
verifies the aPath signature. That is to check:

(()) (, ,)ce sig aPath g e aPath ga== (2)

If the test fails, the client interrupts the process; otherwise, the client computes ()ih m . The client

then uses ()adjh m and ()ih m to compute ,0hv′ . Finally, the client checks if the following condition

is met: ,0 ,0h hv v′== .

If the condition ,0 ,0h hv v′== is still not met, the client interrupts the process; otherwise, the client

computes im′ and ()ih m′ , and uses them to generate a collision R value (using ()col function) for

the first node (,h iv′ in the CAT). Such value can be computed using the Chameleon Hash function. It

depends on the path from the node ()ih m′ to the remaining nodes ,0hv (h h′≥) . The client then

390

uses r′ to update the verification path aPath aPath′→ , and computes the signature of the path
aPath′ , i.e. () ()csig aPath aPath a′ ′= . The client forms an update request:

{ , , , , , ()}c

UpdateRequest
PM i o data aPath sig aPath

=
′ ′ (3)

The update request is sent to CSS. CSS starts with the offset o in im . The data block im will be

updated to im′ with the data. At the same time, it uses the new random number in aPath′ to

update the authentication path in mCAT, and then replaces the old ()csig aPath with ()csig aPath′ .
A "update successfully" response is then sent to the client.

(4) After receiving the “update successfully” response from CSS, the client computes a new

HLA: (())im
i iH m u ασ ′′ ′← ⋅ for the modified data block im′ , and sends it to TPA. TPA replaces the

old ()iHLA σ with the new ()iHLA σ ′ . The client deletes im′ from memory thereafter.
3.3 Third party auditing phase

At this stage, the authorized TPA (authsig to be sent by the client) works with CSS to determine
the integrity of the client’s data. It mainly executes three operations:

(1) Challenge request: This operation is executed by TPA. It uses client pair , ,{ }authu sigϕ for
sharing during the installation phase. TPA takes its ID and encrypts it with the public key of

CSS:{ }PKCSSID . TPA now uses quasi-random function ()sf to generate c different block indices. It

is supposed that ,[]1I n⊆ is the set of c block indices generated by quasi-random function ()sf .

TPA now selects c random coefficients as { }i p i Iv Z ∈∈ . Finally, it forms a challenge

request { },{ },{ ,}PKCSS i i I authChallengeReq ID i v sig∈= , and sends it to CSS.
(2) Integrity proof: After receiving the challenge

information { },, },{ ,{ }PKCSS i i I authChallengeReq ID i sigu v ∈= , CSS verifies authsig . To this end, CSS

first decrypt ID with its private key CSSSK and authk (i.e. authk ID). This is then verified by the
following equation:

,()),(auth authe sig g e k ID ga= (4)

If ()authsignature sig verification fails, it will reject ChallengeReq . Otherwise, CSS computes
i i pi I

v m Zm
∈

= ∈∑ and
() iv

ii I
H mξ

∈
=∏ , where i I∈ . Finally, it sends the evidence

,{ }IntegrityProof µ ξ= to TPA.
(3) Integrity verification. After receiving the ,{ }IntegrityProof µ ξ= information from CSS,

TPA executes the operation VerifyIntegrity . It contains: TPA uses { }, i i Ii v ∈ and stores ()i i Iσ ∈

of the file block, computes
iv

ii I
Gσ σ

∈
= ∈∏ , and verifies whether the following equation is

satisfied:

() (, . ,)e g e u gµ ασ ξ= (5)
If this is not the case, it means that the client data stored on the CSS violates the integrity

requirement. TPA is responsible for reporting the same to the client.

391

4. Conclusion
This paper optimized the public auditing of client data in the cloud environment by migrating

HLA from the CSS site to the TPA site. We also proposed a dynamic data update protocol using the
improved Chameleon Authentication Tree (mCAT). Here, we demonstrate the security of our
optimized audit protocol, showing that it can withstand replay, replace and forge attacks. At the
same time, the validity of the algorithm and the validity of the integrity verification are analyzed
and proved by theoretical analysis.

References
[1] Xu Fenggang; Xu Junkui; Pan Qing; an improved algorithm of extensible Hash method [J];
computer engineering and application; 2004
[2] Chen Tao; Shawn; Liu Fang; Fu Changsheng; Data Layout Algorithms Based on Clustering and
Consistent Hash [J]; Journal of Software; 12 issues 2010

392

